• HOME
    KOREAN
    CHINESS
    SITE MAP
    JOIN
  • Username (Site Login ID)
  • Password
  • Forgot your password?

  • À§Çè°ü¸® | Cases and Studies of Risk Management in Lottery & Gambling | êËúÏη×â

    date : 2015-05-20 01:10|hit : 2638
    Article] Using logarithmic derivative functions for assessing the risky weighting function for binary gambles
    DocNo of ILP: 830

    Doc. Type: Article

    Title: Using logarithmic derivative functions for assessing the risky weighting function for binary gambles

    Authors: Chechile, RA; Barch, DH

    Full Name of Authors: Chechile, Richard A.; Barch, Daniel H.

    Keywords by Author: Utility theory; Risky weighting functions; Models for the probability weighting function; Model comparison

    Keywords Plus: PARAMETER-FREE ELICITATION; GENERIC UTILITY-THEORY; SUBJECTIVE-PROBABILITY; EXPECTED UTILITY; HAZARD FUNCTIONS; PROSPECT-THEORY; MODELS; CHOICE; ADDITIVITY; BEHAVIOR

    Abstract: A logarithmic derivative (LD) of a continuous function g (x) is itself a function in the form of g'(x)/g(x). Hazard and reverse hazard are examples of ID functions that have proven to be useful for discriminating among similar functions for stochastic systems, and the essential idea of ID functions can be used more generally. In this research, an analysis of the logarithmic derivative was employed to evaluate the various proposals for the risky weighting function omega(p) that have been advanced in the psychological and economic literature. Risky weighting functions are the weighting coefficients of the outcome utility values, i.e., if an outcome has an associated probability p, then g'(x)/g(x)(p) is the transform of p that weights the utility of the outcome. An experiment was done to obtain empirical estimates of the logarithmic derivative of the risky weighting function for individuals by utilizing a novel gamble-matching paradigm with binary gambles. Five models from the research literature did not predict the observed shape for the LD function. Four additional models for the risky weighting function could predict the general profile of the LD function but nonetheless resulted in a nonrandom, systematic pattern for the corresponding model fit residuals. The nonrandom pattern of the fit residuals is taken as evidence against the models. Consequently nine models had problems in accounting for the empirical LD function. However, two risky weighting functions provided an accurate description of the empirical LD function. These risky weighting functions are the Prelec function omega(p) = e(-s(-Inp)a), with a and s as fitting parameters, and a novel model, the Exponential Odds function omega(p) = e(-s(1-)b/pa) with a, b and s as fitting parameters. (C) 2013 Elsevier Inc. All rights reserved.

    Cate of OECD: Mathematics

    Year of Publication: 2013

    Business Area: gamble

    Detail Business: gamble

    Country: USA

    Study Area:

    Name of Journal: JOURNAL OF MATHEMATICAL PSYCHOLOGY

    Language: English

    Country of Authors: [Chechile, Richard A.; Barch, Daniel H.] Tufts Univ, Medford, MA 02155 USA

    Press Adress: Chechile, RA (reprint author), Tufts Univ, Dept Psychol, Medford, MA 02155 USA.

    Email Address: Richard.Chechile@tufts.edu

    Citaion:

    Funding:

    Lists of Citation: Abdellaoui M, 2000, MANAGE SCI, V46, P1497, DOI 10.1287/mnsc.46.11.1497.12080; Allais M, 1953, ECONOMETRICA, V21, P503, DOI 10.2307/1907921; Al-Nowaihi A, 2006, J MATH PSYCHOL, V50, P521, DOI 10.1016/j.jmp.2006.07.006; Bernoulli D., 1738, COMMENTARII ACADEMIA, V5, P175; Birnbaum MH, 1996, ORGAN BEHAV HUM DEC, V67, P91, DOI 10.1006/obhd.1996.0067; Bleichrodt H, 2000, MANAGE SCI, V46, P1485, DOI 10.1287/mnsc.46.11.1485.12086; Burnham K. P., 2002, MODEL SELECTION MULT; Chechile RA, 2003, J MATH PSYCHOL, V47, P478, DOI 10.1016/S0022-2496(03)00063-4; Chechile RA, 2000, J RISK UNCERTAINTY, V20, P189, DOI 10.1023/A:1007833125015; Chechile RA, 1997, J RISK UNCERTAINTY, V14, P75, DOI 10.1023/A:1007773804402; Chechile RA, 2011, J MATH PSYCHOL, V55, P203, DOI 10.1016/j.jmp.2011.03.001; Chechile RA, 2003, J RISK UNCERTAINTY, V26, P55, DOI 10.1023/A:1022250307197; Chechile RA, 2006, PSYCHOL REV, V113, P31, DOI 10.1037/0033-295X.113.1.31; COLONIUS H, 1988, PERCEPT PSYCHOPHYS, V43, P604, DOI 10.3758/BF03207750; Diecidue E, 2009, J ECON THEORY, V144, P1102, DOI 10.1016/j.jet.2008.10.004; EDWARDS W, 1962, PSYCHOL REV, V69, P109, DOI 10.1037/h0038674; Finkelstein MS, 2002, RELIAB ENG SYST SAFE, V78, P71, DOI 10.1016/S0951-8320(02)00113-8; GOLDSTEIN WM, 1987, PSYCHOL REV, V94, P236, DOI 10.1037//0033-295X.94.2.236; Wu G, 1996, MANAGE SCI, V42, P1676, DOI 10.1287/mnsc.42.12.1676; Gonzalez R, 1999, COGNITIVE PSYCHOL, V38, P129, DOI 10.1006/cogp.1998.0710; Grunwald P, 2005, ADV MINIMUM DEscRIPT; HANDA J, 1977, J POLIT ECON, V85, P97, DOI 10.1086/260547; Huygens C, 1657, TRACTATUS RATIOCINII; Ingersoll J, 2008, EUR FINANC MANAG, V14, P385, DOI 10.1111/j.1468-036X.2007.00439.x; Karmarkar U. S, 1978, ORG BEH HUMAN PERFOR, V21, P623; Kirk RE, 2013, EXPT DESIGN PROCEDUR; Kolmogorov A.N., 1950, FDN THEORY PROBABILI; LATTIMORE PK, 1992, J ECON BEHAV ORGAN, V17, P377, DOI 10.1016/S0167-2681(95)90015-2; LUCE RD, 1992, J RISK UNCERTAINTY, V5, P5; Luce R. D, 1988, J RISK UNCERTAINTY, V1, P305, DOI 10.1007/BF00056140; Luce R. D., 1986, RESPONSE TIMES THEIR; LUCE RD, 1985, J MATH PSYCHOL, V29, P1, DOI 10.1016/0022-2496(85)90018-5; Luce RD, 2001, J MATH PSYCHOL, V45, P167, DOI 10.1006/jmps.1999.1301; LUCE RD, 1991, J RISK UNCERTAINTY, V4, P29, DOI 10.1007/BF00057885; LUCE RD, 1990, PSYCHOL SCI, V1, P225, DOI 10.1111/j.1467-9280.1990.tb00205.x; LUCE RD, 1993, J RISK UNCERTAINTY, V6, P115, DOI 10.1007/BF01065354; LUCE RD, 1995, J RISK UNCERTAINTY, V11, P5, DOI 10.1007/BF01132728; Miyamoto J. M, 1992, UTILITY THEORIES MEA, P73; MIYAMOTO JM, 1988, J MATH PSYCHOL, V32, P357, DOI 10.1016/0022-2496(88)90019-3; Myung IJ, 2000, J MATH PSYCHOL, V44, P190, DOI 10.1006/jmps.1999.1283; Prelec D, 1998, ECONOMETRICA, V66, P497, DOI 10.2307/2998573; QUIGGIN J, 1982, J ECON BEHAV ORGAN, V3, P323, DOI 10.1016/0167-2681(82)90008-7; Quiggin J., 1993, GEN EXPECTED UTILITY; SCHMEIDLER D, 1989, ECONOMETRICA, V57, P571, DOI 10.2307/1911053; STEVENS SS, 1957, PSYCHOL REV, V64, P153, DOI 10.1037/h0046162; Stott HP, 2006, J RISK UNCERTAINTY, V32, P101, DOI 10.1007/s11166-006-8289-6; Townsend J. T., 1983, STOCHASTIC MODELING; Townsend J. T., 1978, COGNITIVE THEORY, V3, P199; Townsend JT, 2004, PSYCHOL REV, V111, P1003, DOI 10.1037/0033-295x.111.4.1003; Tukey J.W., 1977, EXPLORATORY DATA ANA; TVERSKY A, 1992, J RISK UNCERTAINTY, V5, P297, DOI 10.1007/BF00122574; TVERSKY A, 1967, J MATH PSYCHOL, V4, P175, DOI 10.1016/0022-2496(67)90049-1; von Nitzsch R., 1988, Annals of Operations Research, V16; Worthing A. G., 1943, TREATMENT EXPT DATA

    Number of Citaion: 54

    Publication: ACADEMIC PRESS INC ELSEVIER SCIENCE

    City of Publication: SAN DIEGO

    Address of Publication: 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA

    ISSN: 0022-2496

    29-Character Source Abbreviation: J MATH PSYCHOL

    ISO Source Abbreviation: J. Math. Psychol.

    Volume: 57

    Version: 41641

    Start of File: 15

    End of File: 28

    DOI: 10.1016/j.jmp.2013.03.001

    Number of Pages: 14

    Web of Science Category: Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods; Psychology, Mathematical

    Subject Category: Mathematics; Mathematical Methods In Social Sciences; Psychology

    Document Delivery Number: 158GS

    Unique Article Identifier: WOS:000319958100002

    [ÀÌ °Ô½Ã¹°Àº HyeJung Mo¡¦´Ô¿¡ ÀÇÇØ 2015-05-20 17:09:59 GAMBLING¿¡¼­ À̵¿ µÊ]
    reply : 0
  • list
  • prev
  • next